Finding Initial Parameters of Neural Network for Data Clustering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding Initial Parameters of Neural Network for Data Clustering

K-means fast learning artificial neural network (K-FLANN) algorithm begins with the initialization of two parameters vigilance and tolerance which are the key to get optimal clustering outcome. The optimization task is to change these parameters so a desired mapping between inputs and outputs (clusters) of the KFLANN is achieved. This study presents finding the behavioral parameters of K-FLANN ...

متن کامل

A Weightless Neural Network-Based Approach for Stream Data Clustering

One of the major data mining tasks is to cluster similar data, because of its usefulness, providing means of summarizing large ammounts of raw data into handy information. Clustering data streams is particularly challenging, because of the constraints imposed when dealing with this kind of input. Here we report our work, in which it was investigated the use of WiSARD discriminators as primary d...

متن کامل

Self-Organized Spiking Neural Network Model for Data Clustering

In recent modern era of neural networks technology, a model called Spiking Neural Network (SNN) was born. This SNN was classified by Maass [1] as the third generation of neural networks. It is a new kind of neural network which is inspired and motivated by the biological neurons ways of communication. The biological neurons communicate with each other through the media of action potentials, oft...

متن کامل

A Novel Hybrid Neural Network for Data Clustering

* Professor Sungyoung Lee is the corresponding author. Abstract Clustering plays an indispensable role for data analysis. Many clustering algorithms have been developed. However, most of them suffer either poor performance of unsupervised learning or lacking of mechanisms to utilize some prior knowledge about data (semi-supervised learning) for improving clustering result. In an effort to archi...

متن کامل

Entropy-based Consensus for Distributed Data Clustering

The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Artificial Intelligence & Applications

سال: 2013

ISSN: 0976-2191,0975-900X

DOI: 10.5121/ijaia.2013.4205